Two major advances in autonomous technologies that rival human abilities

The voice of singer John Legend, shown here at Google I/O, will be among six celebrity voices to come to Google Duplex voice technology and Google Assistant later this year, along with phones and home speakers. (credit: Google)

Google Duplex

Google’s new artificial-intelligence Google Duplex voice technology for natural conversations, introduced at the Google I/O event this past week, cleverly blurs the line between human and machine intelligence.

Here are two impressive examples of Duplex’s natural conversations on phone calls (using different voices):

Duplex scheduling a hair salon appointment:

Duplex calling a restaurant:

Google Duplex is designed* to make its voice on phone conversations sound natural** — “thanks to advances in understandinginteractingtiming, and speaking,” according to Google AI Blog. For example, it uses natural-sounding “hmm”s and “uh”s, and the appropriate latency (pause time) to match people’s expectations. “For example, after people say something simple, e.g., ’hello?,’ they expect an instant response.”

Google also said at its I/O developer conference that six new voices are coming to Google Duplex, including singer-songwriter-actor John Legend’s. Legend’s voice, among others, will also come to Google Assistant later this year, and will be included in phones and home speakers.

* “At the core of Duplex is a recurrent neural network (RNN) … built using [Google's] TensorFlow Extended (TFX).”

** To address “creepy” concerns right out of a Westworld show, a Google spokesperson provided an email statement to CNET: “We are designing this feature with disclosure built-in, and we’ll make sure the system is appropriately identified.”

Boston Dynamics

Boston Dynamics has announced two significant autonomous robot developments.

The dog-like SpotMini robot is now able to navigate a set path autonomously, as shown here (in addition to opening doors):

And the humanoid Atlas robot is now able to run and jump over objects:

 

 

 

 

 

 

 

FAA to team with local, state, and tribal governments and companies to develop safe drone operations

Future drone war as portrayed in “Call of Duty Black Ops 2” (credit: Activision Publishing)

U.S. Secretary of Transportation Elaine L. Chao announced today (May 9, 2018) that 10 state, local, and tribal governments have been selected* as participants in the U.S. Department of Transportation’s Unmanned Aircraft Systems (UAS) Integration Pilot Program.

The goal of the program: set up partnerships between the FAA and local, state and tribal governments. These will then partner with private sector participants to safely explore the further integration of drone operations.

“Data gathered from these pilot projects will form the basis of a new regulatory framework to safely integrate drones into our national airspace,” said Chao. Over the next two and a half years, the team will collect drone data involving night operations, flights over people and beyond the pilot’s line of sight, package delivery, detect-and-avoid technologies and the reliability and security of data links between pilot and aircraft.


North Carolina has been selected to test medical delivery with Zipline’s drones, which have been
tested in more than 4000 flights in Rwanda, according to
MIT Technology Review

At least 200 companies were approved to partner in the program, including Airbus, Intel, Qualcomm, Boeing, Ford Motor Co., Uber Technologies Inc., and Fedex (but not Amazon).

“At Memphis International Airport, drones may soon be inspecting planes and delivering airplane parts for FedEx Corp.,” reports Bloomberg. “In Virginia, drones operated by Alphabet’s Project Wing will be used to deliver goods to various communities and then researchers will get feedback from local residents. The data can be used to help develop regulations allowing widespread and routine deliveries sometime in the future.”


The city of Reno, Nevada is partnered with Nevada-based Flirtey, a company that has experimented with delivering defibrillators by drone.

In less than a decade, the potential economic benefit of integrating [unmanned aircraft systems] in the nation’s airspace is estimated at $82 billion and could create 100,000 jobs,” the announcement said. “Fields that could see immediate opportunities from the program include commerce, photography, emergency management, public safety, precision agriculture and infrastructure inspections.”

Criminals and terrorists already see immediate opportunities

But could making drones more accessible and ubiquitous have unintended consequences?

Consider these news reports:

  • A small 2-foot-long quadcopter — a drone with four propellers — crashed onto the White House grounds on January 26, 2015. The event raises some troubling questions about the possibility that terrorists using armed drones could one day attack the White House or other tightly guarded U.S. government locations. — CNN
  • ISIS flew over 300 drone missions in one month during the battle for Mosul, said Peter Singer, a senior fellow and strategist at the New America Foundation, during a November 2017 presentation. About one-third of those flights were armed strike missions. — C4ISRNET
  • ISIS released a propaganda video in 2017 showing them (allegedly) dropping a bomb on a Syrian army ammunition depot. — Vocativ
  • Footage obtained by the BBC shows a drone delivering drugs and mobile phones to London prisoners in April 2016. — BBC

“Last month the FAA said reports of drone-safety incidents, including flying improperly or getting too close to other aircraft, now average about 250 a month, up more than 50 percent from a year earlier,” according to a Nov. 2017 article by Bloomberg. “The reports include near-collisions described by pilots on airliners, law-enforcement helicopters or aerial tankers fighting wildfires.”

Worse, last winter, a criminal gang used a drone swarm to obstruct an FBI hostage raid, Defense One reported on May 3, 2018. The gang buzzed the hostage rescue team and fed video to the group’s other members via YouTube, according to Joe Mazel, the head of the FBI’s operational technology law unit.

“Some criminal organizations have begun to use drones as part of witness intimidation schemes: they continuously surveil police departments and precincts in order to see ‘who is going in and out of the facility and who might be co-operating with police,’ he revealed. … Drones are also playing a greater role in robberies and the like,” the article points out. “Beyond the well-documented incidence of house break-ins, criminal crews are using them to observe bigger target facilities, spot security gaps, and determine patterns of life: where the security guards go and when.

“In Australia, criminal groups have begun have used drones as part of elaborate smuggling schemes,” Mazel said. And Andrew Scharnweber, associate chief of U.S. Customs and Border Protection, “described how criminal networks were using drones to watch Border Patrol officers, identify their gaps in coverage, and exploit them. Cartels are able to move small amounts of high-value narcotics across the border via drones with ‘little or no fear of arrest,’ he said.”

Congressional bill H.R. 4: FAA Reauthorization Act of 2018 attempts to address these problems by making it illegal to “weaponize” consumer drones and would require drones that fly beyond their operators’ line of sight to broadcast an identity code, allowing law enforcement to track and connect them to a real person, the article noted.

How terrorists could use AI-enhanced autonomous drones


The Campaign to Stop Killer Robots, a coalition of AI researchers and advocacy organizations, released this fictional video to depict a disturbing future in which lethal autonomous weapons have become cheap and ubiquitous worldwide.

But the next generation of drones might use AI-enabled swarming to become even more powerful and deadlier, in addition to self-driving vehicles for their next car bombs or assassinations, Defense One warned in another article on May 3, 2018.

“Max Tegmark’s book Life 3.0 notes the concern of UC Berkeley computer scientist Stuart Russell, who worries that the biggest winners from an AI arms race would be ‘small rogue states and non-state actors such as terrorists’ who can access these weapons through the black market,” the article notes.

“Tegmark writes that they are ‘mass-produced, small AI-powered killer drones are likely to cost little more than a smartphone.’ Would-be assassins could simply ‘upload their target’s photo and address into the killer drone: it can then fly to the destination, identify and eliminate the person, and self-destruct to ensure that nobody knows who was responsible.’”

* The 10 selectees are:

  • Choctaw Nation of Oklahoma, Durant, OK
  • City of San Diego, CA
  • Virginia Tech – Center for Innovative Technology, Herndon, VA
  • Kansas Department of Transportation, Topeka, KS
  • Lee County Mosquito Control District, Ft. Myers, FL
  • Memphis-Shelby County Airport Authority, Memphis, TN
  • North Carolina Department of Transportation, Raleigh, NC
  • North Dakota Department of Transportation, Bismarck, ND
  • City of Reno, NV
  • University of Alaska-Fairbanks, Fairbanks, AK

round-up | Hawking’s radical instant-universe-as-hologram theory and the scary future of information warfare

A timeline of the Universe based on the cosmic inflation theory (credit: WMAP science team/NASA)

Stephen Hawking’s final cosmology theory says the universe was created instantly (no inflation, no singularity) and it’s a hologram

There was no singularity just after the big bang (and thus, no eternal inflation) — the universe was created instantly. And there were only three dimensions. So there’s only one finite universe, not a fractal or a multiverse — and we’re living in a projected hologram. That’s what Hawking and co-author Thomas Hertog (a theoretical physicist at the Catholic University of Leuven) have concluded — contradicting Hawking’s former big-bang singularity theory (with time as a dimension).

Problem: So how does time finally emerge? “There’s a lot of work to be done,” admits Hertog. Citation (open access): Journal of High Energy Physics, May 2, 2018. Source (open access): Science, May 2, 2018


Movies capture the dynamics of an RNA molecule from the HIV-1 virus. (photo credit: Yu Xu et al.)

Molecular movies of RNA guide drug discovery — a new paradigm for drug discovery

Duke University scientists have invented a technique that combines nuclear magnetic resonance imaging and computationally generated movies to capture the rapidly changing states of an RNA molecule.

It could lead to new drug targets and allow for screening millions of potential drug candidates. So far, the technique has predicted 78 compounds (and their preferred molecular shapes) with anti-HIV activity, out of 100,000 candidate compounds. Citation: Nature Structural and Molecular Biology, May 4, 2018. Source: Duke University, May 4, 2018.


Chromium tri-iodide magnetic layers between graphene conductors. By using four layers, the storage density could be multiplied. (credit: Tiancheng Song)

Atomically thin magnetic memory

University of Washington scientists have developed the first 2D (in a flat plane) atomically thin magnetic memory — encoding information using magnets that are just a few layers of atoms in thickness — a miniaturized, high-efficiency alternative to current disk-drive materials.

In an experiment, the researchers sandwiched two atomic layers of chromium tri-iodide (CrI3) — acting as memory bits — between graphene contacts and measured the on/off electron flow through the atomic layers.

The U.S. Dept. of Energy-funded research could dramatically increase future data-storage density while reducing energy consumption by orders of magnitude. Citation: Science, May 3, 2018. Source: University of Washington, May 3, 2018.


Definitions of artificial intelligence (credit: House of Lords Select Committee on Artificial Intelligence)

A Magna Carta for the AI age

A report by the House of Lords Select Committee on Artificial Intelligence in the U.K. lays out “an overall charter for AI that can frame practical interventions by governments and other public agencies.”

The key elements: Be developed for the common good. Operate on principles of intelligibility and fairness: users must be able to easily understand the terms under which their personal data will be used. Respect rights to privacy. Be grounded in far-reaching changes to education. Teaching needs reform to utilize digital resources, and students must learn not only digital skills but also how to develop a critical perspective online. Never be given the autonomous power to hurt, destroy or deceive human beings.

Source: The Washington Post, May 2, 2018.


(credit: CB Insights)

The future of information warfare

Memes and social networks have become weaponized, but many governments seem ill-equipped to understand the new reality of information warfare.

The weapons include: Computational propaganda: digitizing the manipulation of public opinion; advanced digital deception technologies; malicious AI impersonating and manipulating people; and AI-generated fake video and audio. Counter-weapons include: Spotting AI-generated people; uncovering hidden metadata to authenticate images and videos; blockchain for tracing digital content back to the source; and detecting image and video manipulation at scale.

Source (open-access): CB Insights Research Brief, May 3, 2018.

How deep learning is about to transform biomedical science

Human induced pluripotent stem cell neurons imaged in phase contrast (gray pixels, left) — currently processed manually with fluorescent labels (color pixels) to make them visible. That’s about to radically change. (credit: Google)

Researchers at Google, Harvard University, and Gladstone Institutes have developed and tested new deep-learning algorithms that can identify details in terabytes of bioimages, replacing slow, less-accurate manual labeling methods.

Deep learning is a type of machine learning that can analyze data, recognize patterns, and make predictions. A new deep-learning approach to biological images, which the researchers call “in silico labeling” (ISL), can automatically find and predict features in images of “unlabeled” cells (cells that have not been manually identified by using fluorescent chemicals).

The new deep-learning network can identify whether a cell is alive or dead, and get the answer right 98 percent of the time (humans can typically only identify a dead cell with 80 percent accuracy) — without requiring invasive fluorescent chemicals, which make it difficult to track tissues over time. The deep-learning network can also predict detailed features such as nuclei and cell type (such as neural or breast cancer tissue).

The deep-learning algorithms are expected to make it possible to handle the enormous 3–5 terabytes of data per day generated by Gladstone Institutes’ fully automated robotic microscope, which can track individual cells for up to several months.

The research was published in the April 12, 2018 issue of the journal Cell.

How to train a deep-learning neural network to predict the identity of cell features in microscope images


Using fluorescent labels with unlabeled images to train a deep neural network to bring out image detail. (Left) An unlabeled phase-contrast microscope transmitted-light image of rat cortex — the center image from the z-stack (vertical stack) of unlabeled images. (Right three images) Labeled images created with three different fluorescent labels, revealing invisible details of cell nuclei (blue), dendrites (green), and axons (red). The numbered outsets at the bottom show magnified views of marked subregions of images. (credit: Finkbeiner Lab)

To explore the new deep-learning approach, Steven Finkbeiner, MD, PhD, the director of the Center for Systems and Therapeutics at Gladstone Institutes in San Francisco, teamed up with computer scientists at Google.

“We trained the [deep learning] neural network by showing it two sets of matching images of the same cells: one unlabeled [such as the black and white "phase contrast"microscope image shown in the illustration] and one with fluorescent labels [such as the three colored images shown above],” explained Eric Christiansen, a software engineer at Google Accelerated Science and the study’s first author. “We repeated this process millions of times. Then, when we presented the network with an unlabeled image it had never seen, it could accurately predict where the fluorescent labels belong.” (Fluorescent labels are created by adding chemicals to tissue samples to help visualize details.)

The study used three cell types: human motor neurons derived from induced pluripotent stem cells, rat cortical cultures, and human breast cancer cells. For instance, the deep-learning neural network can identify a physical neuron within a mix of cells in a dish. It can go one step further and predict whether an extension of that neuron is an axon or dendrite (two different but similar-looking elements of the neural cell).

For this study, Google used TensorFlow, an open-source machine learning framework for deep learning originally developed by Google AI engineers. The code for this study, which is open-source on Github, is the result of a collaboration between Google Accelerated Science and two external labs: the Lee Rubin lab at Harvard and the Steven Finkbeiner lab at Gladstone.

Animation showing the same cells in transmitted light (black and white) and fluorescence (colored) imaging, along with predicted fluorescence labels from the in silico labeling model. Outset 2 shows the model predicts the correct labels despite the artifact in the transmitted-light input image. Outset 3 shows the model infers these processes are axons, possibly because of their distance from the nearest cells. Outset 4 shows the model sees the hard-to-see cell at the top, and correctly identifies the object at the left as DNA-free cell debris. (credit: Google)

Transforming biomedical research

“This is going to be transformative,” said Finkbeiner, who is also a professor of neurology and physiology at UC San Francisco. “Deep learning is going to fundamentally change the way we conduct biomedical science in the future, not only by accelerating discovery, but also by helping find treatments to address major unmet medical needs.”

In his laboratory, Finkbeiner is trying to find new ways to diagnose and treat neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS). “We still don’t understand the exact cause of the disease for 90 percent of these patients,” said Finkbeiner. “What’s more, we don’t even know if all patients have the same cause, or if we could classify the diseases into different types. Deep learning tools could help us find answers to these questions, which have huge implications on everything from how we study the disease to the way we conduct clinical trials.”

Without knowing the classifications of a disease, a drug could be tested on the wrong group of patients and seem ineffective, when it could actually work for different patients. With induced pluripotent stem cell technology, scientists could match patients’ own cells with their clinical information, and the deep network could find relationships between the two datasets to predict connections. This could help identify a subgroup of patients with similar cell features and match them to the appropriate therapy, Finkbeiner suggests.

The research was funded by Google, the National Institute of Neurological Disorders and Stroke of the National Institutes of Health, the Taube/Koret Center for Neurodegenerative Disease Research at Gladstone, the ALS Association’s Neuro Collaborative, and The Michael J. Fox Foundation for Parkinson’s Research.


Abstract of In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images

Microscopy is a central method in life sciences. Many popular methods, such as antibody labeling, are used to add physical fluorescent labels to specific cellular constituents. However, these approaches have significant drawbacks, including inconsistency; limitations in the number of simultaneous labels because of spectral overlap; and necessary pertur-bations of the experiment, such as fixing the cells, to generate the measurement. Here, we show that a computational machine-learning approach, which we call ‘‘in silico labeling’’ (ISL), reliably predicts some fluorescent labels from transmitted-light images of unlabeled fixed or live biological samples. ISL predicts a range of labels, such as those for nuclei, cell type (e.g., neural), and cell state (e.g., cell death). Because prediction happens in silico, the method is consistent, is not limited by spectral overlap, and does not disturb the experiment. ISL generates biological measurements that would otherwise be problematic or impossible to acquire.

Google announces new ‘Talk to Books’ semantic-search feature

Google announced today, April 13, 2018, a new experimental publicly available technology called Talk to Books, which lets you ask questions in plain-English sentences to discover relevant information from more than 100,000 books, comprising 600 million sentences.

For example, if you ask, “Can AIs have consciousness?,” Talk to Books returns a list of books that include information on that specific question.

The new feature was developed by a team at Google Research headed by Ray Kurzweil, a Google director of engineering. As Kurzweil and associates note in a Google Research Blog post today, “With Talk to Books, we’re combining two powerful ideas: semantic search and a new way to discover books.”

Experiments in understanding language

Semantic search is based on searching meaning, rather than on keywords or phrases. Developed with machine learning, it uses “natural language understanding” of words and phrases. Semantic search is explained further on Google’s new “Semantic Experiences” page, which includes a link to Semantris, a set of word-association games that lets you explore how Google’s AI has learned to predict which words are semantically related.

The new semantic-search feature is based on the research by Kurzweil and his team in developing an enhanced version of Google’s “smart reply” feature (which provides suggestions for responding to each of your Google emails), as explained in an arXiv paper by Kurzweil’s team.

That research is further described in a March 29, 2018 arXiv paper. Also released is a version of the underlying technology that will enable developers to use these new semantic-search tools — including a universal sentence encoder — in their own applications, similar to Talk to Books.

The brain learns completely differently than we’ve assumed, new learning theory says

(credit: Getty)

A revolutionary new theory contradicts a fundamental assumption in neuroscience about how the brain learns. According to researchers at Bar-Ilan University in Israel led by Prof. Ido Kanter, the theory promises to transform our understanding of brain dysfunction and may lead to advanced, faster, deep-learning algorithms.

A biological schema of an output neuron, comprising a neuron’s soma (body, shown as gray circle, top) with two roots of dendritic trees (light-blue arrows), splitting into many dendritic branches (light-blue lines). The signals arriving from the connecting input neurons (gray circles, bottom) travel via their axons (red lines) and their many branches until terminating with the synapses (green stars). There, the signals connect with dendrites (some synapse branches travel to other neurons), which then connect to the soma. (credit: Shira Sardi et al./Sci. Rep)

The brain is a highly complex network containing billions of neurons. Each of these neurons communicates simultaneously with thousands of others via their synapses. A neuron collects its many synaptic incoming signals through dendritic trees.

In 1949, Donald Hebb suggested that learning occurs in the brain by modifying the strength of synapses. Hebb’s theory has remained a deeply rooted assumption in neuroscience.

Synaptic vs. dendritic learning

In vitro experimental setup. A micro-electrode array comprising 60 extracellular electrodes separated by 200 micrometers, indicating a neuron patched (connected) by an intracellular electrode (orange) and a nearby extracellular electrode (green line). (Inset) Reconstruction of a fluorescence image, showing a patched cortical pyramidal neuron (red) and its dendrites growing in different directions and in proximity to extracellular electrodes. (credit: Shira Sardi et al./Scientific Reports adapted by KurzweilAI)

Hebb was wrong, says Kanter. “A new type of experiments strongly indicates that a faster and enhanced learning process occurs in the neuronal dendrites, similarly to what is currently attributed to the synapse,” Kanter and his team suggest in an open-access paper in Nature’s Scientific Reports, published Mar. 23, 2018.

“In this new [faster] dendritic learning process, there are [only] a few adaptive parameters per neuron, in comparison to thousands of tiny and sensitive ones in the synaptic learning scenario,” says Kanter. “Does it make sense to measure the quality of air we breathe via many tiny, distant satellite sensors at the elevation of a skyscraper, or by using one or several sensors in close proximity to the nose,?” he asks. “Similarly, it is more efficient for the neuron to estimate its incoming signals close to its computational unit, the neuron.”

Image representing the current synaptic (pink) vs. the new dendritic (green) learning scenarios of the brain. In the current scenario, a neuron (black) with a small number (two in this example) dendritic trees (center) collects incoming signals via synapses (represented by red valves), with many thousands of tiny adjustable learning parameters. In the new dendritic learning scenario (green) a few (two in this example) adjustable controls (red valves) are located in close proximity to the computational element, the neuron. The scale is such that if a neuron collecting its incoming signals is represented by a person’s faraway fingers, the length of its hands would be as tall as a skyscraper (left). (credit: Prof. Ido Kanter)

The researchers also found that weak synapses, which comprise the majority of our brain and were previously assumed to be insignificant, actually play an important role in the dynamics of our brain.

According to the researchers, the new learning theory may lead to advanced, faster, deep-learning algorithms and other artificial-intelligence-based applications, and also suggests that we need to reevaluate our current treatments for disordered brain functionality.

This research is supported in part by the TELEM grant of the Israel Council for Higher Education.


Abstract of Adaptive nodes enrich nonlinear cooperative learning beyond traditional adaptation by links

Physical models typically assume time-independent interactions, whereas neural networks and machine learning incorporate interactions that function as adjustable parameters. Here we demonstrate a new type of abundant cooperative nonlinear dynamics where learning is attributed solely to the nodes, instead of the network links which their number is significantly larger. The nodal, neuronal, fast adaptation follows its relative anisotropic (dendritic) input timings, as indicated experimentally, similarly to the slow learning mechanism currently attributed to the links, synapses. It represents a non-local learning rule, where effectively many incoming links to a node concurrently undergo the same adaptation. The network dynamics is now counterintuitively governed by the weak links, which previously were assumed to be insignificant. This cooperative nonlinear dynamic adaptation presents a self-controlled mechanism to prevent divergence or vanishing of the learning parameters, as opposed to learning by links, and also supports self-oscillations of the effective learning parameters. It hints on a hierarchical computational complexity of nodes, following their number of anisotropic inputs and opens new horizons for advanced deep learning algorithms and artificial intelligence based applications, as well as a new mechanism for enhanced and fast learning by neural networks.

‘Minimalist machine learning’ algorithm analyzes complex microscopy and other images from very little data

(a) Raw microscopy image of a slice of mouse lymphblastoid cells. (b) Reconstructed image using time-consuming manual segmentation — note missing data (arrow). (c) Equivalent output of the new “Mixed-Scale Dense Convolution Neural Network” algorithm with 100 layers. (credit: Data from A. Ekman and C. Larabell, National Center for X-ray Tomography.)

Mathematicians at Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a radical new approach to machine learning: a new type of highly efficient “deep convolutional neural network” that can automatically analyze complex experimental scientific images from limited data.*

As experimental facilities generate higher-resolution images at higher speeds, scientists struggle to manage and analyze the resulting data, which is often done painstakingly by hand.

For example, biologists record cell images and painstakingly outline the borders and structure by hand. One person may spend weeks coming up with a single fully three-dimensional image of a cellular structure. Or materials scientists use tomographic reconstruction to peer inside rocks and materials, and then manually label different regions, identifying cracks, fractures, and voids by hand. Contrasts between different yet important structures are often very small and “noise” in the data can mask features and confuse the best of algorithms.

To meet this challenge, mathematicians Daniël Pelt and James Sethian at Berkeley Lab’s Center for Advanced Mathematics for Energy Research Applications (CAMERA)** attacked the problem of machine learning from very limited amounts of data — to do “more with less.”

Their goal was to figure out how to build an efficient set of mathematical “operators” that could greatly reduce the number of required parameters.

“Mixed-Scale Dense” network learns quickly with far fewer images

Many applications of machine learning to imaging problems use deep convolutional neural networks (DCNNs), in which the input image and intermediate images are convolved in a large number of successive layers, allowing the network to learn highly nonlinear features. To train deeper and more powerful networks, additional layer types and connections are often required. DCNNs typically use a large number of intermediate images and trainable parameters, often more than 100 million, to achieve results for difficult problems.

The new method the mathematicians developed, “Mixed-Scale Dense Convolution Neural Network” (MS-D), avoids many of these complications. It “learns” much more quickly than manually analyzing the tens or hundreds of thousands of labeled images required by typical machine-learning methods, and requires far fewer images, according to Pelt and Sethian.

(Top) A schematic representation of a two-layer CNN architecture. (Middle) A schematic representation of a common DCNN architecture with scaling operations; downward arrows represent downscaling operations, upward arrows represent upscaling operations and dashed arrows represent skipped connections. (Bottom) Schematic representation of an MS-D network; colored lines represent 3×3 dilated convolutions, with each color corresponding to a different dilation. (credit: Daniël Pelt and James Sethian/PNAS, composited by KurzweilAI)

The “Mixed-Scale Dense” network architecture calculates ”dilated convolutions” — a substitute for complex scaling operations. To capture features at various spatial ranges, it employs multiple scales within a single layer, and densely connects all intermediate images. The new algorithm achieves accurate results with few intermediate images and parameters, eliminating both the need to tune hyperparameters and additional layers or connections to enable training, according to the researchers.***

“In many scientific applications, tremendous manual labor is required to annotate and tag images — it can take weeks to produce a handful of carefully delineated images,” said Sethian, who is also a mathematics professor at the University of California, Berkeley. “Our goal was to develop a technique that learns from a very small data set.”

Details of the algorithm were published Dec. 26, 2017 in a paper in the Proceedings of the National Academy of Sciences.

Radically transforming our ability to understand disease

The MS-D approach is already being used to extract biological structure from cell images, and is expected to provide a major new computational tool to analyze data across a wide range of research areas. In one project, the MS-D method needed data from only seven cells to determine the cell structure.

“The breakthrough resulted from realizing that the usual downscaling and upscaling that capture features at various image scales could be replaced by mathematical convolutions handling multiple scales within a single layer,” said Pelt, who is also a member of the Computational Imaging Group at the Centrum Wiskunde & Informatica, the national research institute for mathematics and computer science in the Netherlands.

“In our laboratory, we are working to understand how cell structure and morphology influences or controls cell behavior. We spend countless hours hand-segmenting cells in order to extract structure, and identify, for example, differences between healthy vs. diseased cells,” said Carolyn Larabell, Director of the National Center for X-ray Tomography and Professor at the University of California San Francisco School of Medicine.

“This new approach has the potential to radically transform our ability to understand disease, and is a key tool in our new Chan-Zuckerberg-sponsored project to establish a Human Cell Atlas, a global collaboration to map and characterize all cells in a healthy human body.”

To make the algorithm accessible to a wide set of researchers, a Berkeley team built a web portal, “Segmenting Labeled Image Data Engine (SlideCAM),” as part of the CAMERA suite of tools for DOE experimental facilities.

High-resolution science from low-resolution data

A different challenge is to produce high-resolution images from low-resolution input. If you’ve ever tried to enlarge a small photo and found it only gets worse as it gets bigger, this may sound close to impossible.

(a) Tomographic images of a fiber-reinforced mini-composite, reconstructed using 1024 projections. Noisy images (b) of the same object were obtained by reconstructing using only 128 projections, and were used as input to an MS-D network (c). A small region indicated by a red square is shown enlarged in the bottom-right corner of each image. (credit: Daniël Pelt and James A. Sethian/PNAS)

As an example, imagine trying to de-noise tomographic reconstructions of a fiber-reinforced mini-composite material. In an experiment described in the paper, images were reconstructed using 1,024 acquired X-ray projections to obtain images with relatively low amounts of noise. Noisy images of the same object were then obtained by reconstructing using only 128 projections. Training inputs to the Mixed-Scale Dense network were the noisy images, with corresponding noiseless images used as target output during training. The trained network was then able to effectively take noisy input data and reconstruct higher resolution images.

Pelt and Sethian are now applying their approach to other new areas, such as real-time analysis of images coming out of synchrotron light sources, biological reconstruction of cells, and brain mapping.

* Inspired by the brain, convolutional neural networks are computer algorithms that have been successfully used in analyzing visual imagery. “Deep convolutional neural networks (DCNNs) use a network architecture similar to standard convolutional neural networks, but consist of a larger number of layers, which enables them to model more complicated functions. In addition, DCNNs often include downscaling and upscaling operations between layers, decreasing and increasing the dimensions of feature maps to capture features at different image scales.” — Daniël Pelt and James A. Sethian/PNAS

** In 2014, Sethian established CAMERA at the Department of Energy’s (DOE) Lawrence Berkeley National Laboratory as an integrated, cross-disciplinary center to develop and deliver fundamental new mathematics required to capitalize on experimental investigations at DOE Office of Science user facilities. CAMERA is part of the lab’s Computational Research Division. It is supported by the offices of Advanced Scientific Computing Research and Basic Energy Sciences in the Department of Energy’s Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time.

*** “By combining dilated convolutions and dense connections, the MS-D network architecture can achieve accurate results with significantly fewer feature maps and trainable parameters than existing architectures, enabling accurate training with relatively small training sets. MS-D networks are able to automatically adapt by learning which combination of dilations to use, allowing identical MS-D networks to be applied to a wide range of different problems.” — Daniël Pelt and James A. Sethian/PNAS


Abstract of A mixed-scale dense convolutional neural network for image analysis

Deep convolutional neural networks have been successfully applied to many image-processing problems in recent works. Popular network architectures often add additional operations and connections to the standard architecture to enable training deeper networks. To achieve accurate results in practice, a large number of trainable parameters are often required. Here, we introduce a network architecture based on using dilated convolutions to capture features at different image scales and densely connecting all feature maps with each other. The resulting architecture is able to achieve accurate results with relatively few parameters and consists of a single set of operations, making it easier to implement, train, and apply in practice, and automatically adapts to different problems. We compare results of the proposed network architecture with popular existing architectures for several segmentation problems, showing that the proposed architecture is able to achieve accurate results with fewer parameters, with a reduced risk of overfitting the training data.

Do our brains use the same kind of deep-learning algorithms used in AI?

This is an illustration of a multi-compartment neural network model for deep learning. Left: Reconstruction of pyramidal neurons from mouse primary visual cortex, the most prevalent cell type in the cortex. The tree-like form separates “roots,” where bottoms of cortical neurons are located just where they need to be to receive signals about sensory input, from “branches” at the top, which are well placed to receive feedback error signals. Right: Illustration of simplified pyramidal neuron models. (credit: CIFAR)

Deep-learning researchers have found that certain neurons in the brain have shape and electrical properties that appear to be well-suited for “deep learning” — the kind of machine-intelligence used in beating humans at Go and Chess.

Canadian Institute For Advanced Research (CIFAR) Fellow Blake Richards and his colleagues — Jordan Guerguiev at the University of Toronto, Scarborough, and Timothy Lillicrap at Google DeepMind — developed an algorithm that simulates how a deep-learning network could work in our brains. It represents a biologically realistic way by which real brains could do deep learning.*

The finding is detailed in a study published December 5th in the open-access journal eLife. (The paper is highly technical; Adam Shai of Stanford University and Matthew E. Larkum of Humboldt University, Germany wrote a more accessible paper summarizing the ideas, published in the same eLife issue.)

Seeing the trees and the forest

Image of a neuron recorded in Blake Richard’s lab (credit: Blake Richards)

“Most of these neurons are shaped like trees, with ‘roots’ deep in the brain and ‘branches’ close to the surface,” says Richards. “What’s interesting is that these roots receive a different set of inputs than the branches that are way up at the top of the tree.” That allows these functions to have the required separation.

Using this knowledge of the neurons’ structure, the researchers built a computer model using the same shapes, with received signals in specific sections. It turns out that these sections allowed simulated neurons in different layers to collaborate — achieving deep learning.

“It’s just a set of simulations so it can’t tell us exactly what our brains are doing, but it does suggest enough to warrant further experimental examination if our own brains may use the same sort of algorithms that they use in AI,” Richards says.

“No one has tested our predictions yet,” he told KurzweilAI. “But, there’s a new preprint that builds on what we were proposing in a nice way from Walter Senn‘s group, and which includes some results on unsupervised learning (Yoshua [Bengio] mentions this work in his talk).

How the brain achieves deep learning

The tree-like pyramidal neocortex neurons are only one of many types of cells in the brain. Richards says future research should model different brain cells and examine how they interact together to achieve deep learning. In the long term, he hopes researchers can overcome major challenges, such as how to learn through experience without receiving feedback or to solve the “credit assignment problem.”**

Deep learning has brought about machines that can “see” the world more like humans can, and recognize language. But does the brain actually learn this way? The answer has the potential to create more powerful artificial intelligence and unlock the mysteries of human intelligence, he believes.

“What we might see in the next decade or so is a real virtuous cycle of research between neuroscience and AI, where neuroscience discoveries help us to develop new AI and AI can help us interpret and understand our experimental data in neuroscience,” Richards says.

Perhaps this kind of research could one day also address future ethical and other human-machine-collaboration issues — including merger, as Elon Musk and Ray Kurzweil have proposed, to achieve a “soft takeoff” in the emergence of superintelligence.

* This research idea goes back to AI pioneers Geoffrey Hinton, a CIFAR Distinguished Fellow and founder of the Learning in Machines & Brains program, and program Co-Director Yoshua Bengio, who was one of the main motivations for founding the program. These researchers sought not only to develop artificial intelligence, but also to understand how the human brain learns, says Richards.

In the early 2000s, Richards and Lillicrap took a course with Hinton at the University of Toronto and were convinced deep learning models were capturing “something real” about how human brains work. At the time, there were several challenges to testing that idea. Firstly, it wasn’t clear that deep learning could achieve human-level skill. Secondly, the algorithms violated biological facts proven by neuroscientists.

The paper builds on research from Bengio’s lab on a more biologically plausible way to train neural nets and an algorithm developed by Lillicrap that further relaxes some of the rules for training neural nets. The paper also incorporates research from Matthew Larkam on the structure of neurons in the neocortex.

By combining neurological insights with existing algorithms, Richards’ team was able to create a better and more realistic algorithm for simulating learning in the brain.

The study was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), a Google Faculty Research Award, and CIFAR.

** In the paper, the authors note that a large gap exists between deep learning in AI and our current understanding of learning and memory in neuroscience. “In particular, unlike deep learning researchers, neuroscientists do not yet have a solution to the ‘credit assignment problem’ (Rumelhart et al., 1986; Lillicrap et al., 2016; Bengio et al., 2015). Learning to optimize some behavioral or cognitive function requires a method for assigning ‘credit’ (or ‘blame’) to neurons for their contribution to the final behavioral output (LeCun et al., 2015; Bengio et al., 2015). The credit assignment problem refers to the fact that assigning credit in multi-layer networks is difficult, since the behavioral impact of neurons in early layers of a network depends on the downstream synaptic connections.” The authors go on to suggest a solution.

 

How to train a robot to do complex abstract thinking

Robot inspects cooler, ponders next step (credit: Intelligent Robot Lab / Brown University)

Robots are great at following programmed steps. But asking a robot to “move the green bottle from the cooler to the cupboard” would require it to have abstract representations of these things and actions, plus knowledge of its surroundings.

(“Hmm, which of those millions of pixels is a ‘cooler,’ whatever than means? How do I get inside it and also the ‘cupboard’? …”)

To help robots answer these kinds of questions and plan complex multi-step tasks, robots can construct two kinds of abstract representations of the world around them, say Brown University and MIT researchers:

  • “Procedural abstractions”: bundling all the low-level movements composed into higher-level skills (such as opening a door). Most of those robots doing fancy athletic tricks are explicitly programmed with such procedural abstractions, say the researchers.
  • “Perceptual abstractions”: making sense out of the millions of confusing pixels in the real world.

Building truly intelligent robots

According to George Konidaris, Ph.D., an assistant professor of computer science at Brown and the lead author of the new study, there’s been less progress in perceptual abstraction — the focus of the new research.

To explore this, the researchers trained a robot they called “Anathema” (aka “Ana”). They started by teaching Ana “procedural abstractions” in a room containing a cupboard, a cooler, a switch that controls a light inside the cupboard, and a bottle that could be left in either the cooler or the cupboard. They gave Ana a set of high-level motor skills for manipulating the objects in the room, such as opening and closing both the cooler and the cupboard, flipping the switch, and picking up a bottle.

Ana was also able to learn a very abstract description of the visual environment that contained only what was necessary for her to be able to perform a particular skill. Once armed with these learned abstract procedures and perceptions, the researchers gave Ana a challenge: “Take the bottle from the cooler and put it in the cupboard.”


Ana’s dynamic concept of a “cooler,” based on configurations of pixels in open and closed positions. (credit: Intelligent Robot Lab / Brown University)

Accepting the challenge, Ana navigated to the cooler. She had learned the configuration of pixels in her visual field associated with the cooler lid being closed (the only way to open it). She had also learned how to open it: stand in front of it and don’t do anything (because she needed both hands to open the lid).

She opened the cooler and sighted the bottle. But she didn’t pick it up. Not yet.

She realized that if she had the bottle in her gripper, she wouldn’t be able to open the cupboard — that requires both hands. Instead, she went directly to the cupboard.

There, she saw that the light switch was in the “on” position, and instantly realized that opening the cupboard would block the switch. So she turned the switch off before opening the cupboard. Finally, she returned to the cooler, retrieved the bottle, and placed it in the cupboard.

She had developed the entire plan in about four milliseconds.


“She learned these abstractions on her own”

Once a robot has high-level motor skills, it can automatically construct a compatible high-level symbolic representation of the world by making sense of its pixelated surroundings, according to Konidaris. “We didn’t provide Ana with any of the abstract representations she needed to plan for the task,” he said. “She learned those abstractions on her own, and once she had them, planning was easy.”

Her entire knowledge and skill set was represented in a text file just 126 lines long.

Konidaris says the research provides an important theoretical building block for applying artificial intelligence to robotics. “We believe that allowing our robots to plan and learn in the abstract rather than the concrete will be fundamental to building truly intelligent robots,” he said. “Many problems are often quite simple, if you think about them in the right way.”

Source: Journal of Artificial Intelligence Research (open-access). Funded by DARPA and MIT’s Intelligence Initiative.


IRL Lab | Learning Symbolic Representations for High-Level Robot Planning

AI algorithm with ‘social skills’ teaches humans how to collaborate

(credit: Iyad Rahwan)

An international team has developed an AI algorithm with social skills that has outperformed humans in the ability to cooperate with people and machines in playing a variety of two-player games.

The researchers, led by Iyad Rahwan, PhD, an MIT Associate Professor of Media Arts and Sciences, tested humans and the algorithm, called S# (“S sharp”), in three types of interactions: machine-machine, human-machine, and human-human. In most instances, machines programmed with S# outperformed humans in finding compromises that benefit both parties.

“Two humans, if they were honest with each other and loyal, would have done as well as two machines,” said lead author BYU computer science professor Jacob Crandall. “As it is, about half of the humans lied at some point. So essentially, this particular algorithm is learning that moral characteristics are better [since it’s programmed to not lie] and it also learns to maintain cooperation once it emerges.”

“The end goal is that we understand the mathematics behind cooperation with people and what attributes artificial intelligence needs to develop social skills,” said Crandall. “AI needs to be able to respond to us and articulate what it’s doing. It has to be able to interact with other people.”

How casual talk by AI helps humans be more cooperative

One important finding: colloquial phrases (called “cheap talk” in the study) doubled the amount of cooperation. In tests, if human participants cooperated with the machine, the machine might respond with a “Sweet. We are getting rich!” or “I accept your last proposal.” If the participants tried to betray the machine or back out of a deal with them, they might be met with a trash-talking “Curse you!”, “You will pay for that!” or even an “In your face!”

And when machines used cheap talk, their human counterparts were often unable to tell whether they were playing a human or machine — a sort of mini “Turing test.”

The research findings, Crandall hopes, could have long-term implications for human relationships. “In society, relationships break down all the time,” he said. “People that were friends for years all of a sudden become enemies. Because the machine is often actually better at reaching these compromises than we are, it can potentially teach us how to do this better.”

The research is described in an open-access paper in Nature Communications.

A human-machine collaborative chatbot system 

An actual conversation on Evorus, combining multiple chatbots and workers. (credit: T. Huang et al.)

In a related study, Carnegie Mellon University (CMU) researchers have created a new collaborative chatbot called Evorus that goes beyond Siri, Alexa, and Cortana by adding humans in the loop.

Evorus combines a chatbot called Chorus with inputs by paid crowd workers at Amazon Mechanical Turk, who answer questions from users and vote on the best answer. Evorus keeps track of the questions asked and answered and, over time, begins to suggest these answers for subsequent questions. It can also use multiple chatbots, such as vote bots, Yelp Bot (restaurants) and Weather Bot to provide enhanced information.

Humans are simultaneously training the system’s AI, making it gradually less dependent on people, says Jeff Bigham, associate professor in the CMU Human-Computer Interaction Institute.

The hope is that as the system grows, the AI will be able to handle an increasing percentage of questions, while the number of crowd workers necessary to respond to “long tail” questions will remain relatively constant.

Keeping humans in the loop also reduces the risk that malicious users will manipulate the conversational agent inappropriately, as occurred when Microsoft briefly deployed its Tay chatbot in 2016, noted co-developer Ting-Hao Huang, a Ph.D. student in the Language Technologies Institute (LTI).

The preliminary system is available for download and use by anyone willing to be part of the research effort. It is deployed via Google Hangouts, which allows for voice input as well as access from computers, phones, and smartwatches. The software architecture can also accept automated question-answering components developed by third parties.

A open-access research paper on Evorus, available online, will be presented at CHI 2018, the Conference on Human Factors in Computing Systems in Montreal, April 21–26, 2018.


Abstract of Cooperating with machines

Since Alan Turing envisioned artificial intelligence, technical progress has often been measured by the ability to defeat humans in zero-sum encounters (e.g., Chess, Poker, or Go). Less attention has been given to scenarios in which human–machine cooperation is beneficial but non-trivial, such as scenarios in which human and machine preferences are neither fully aligned nor fully in conflict. Cooperation does not require sheer computational power, but instead is facilitated by intuition, cultural norms, emotions, signals, and pre-evolved dispositions. Here, we develop an algorithm that combines a state-of-the-art reinforcement-learning algorithm with mechanisms for signaling. We show that this algorithm can cooperate with people and other algorithms at levels that rival human cooperation in a variety of two-player repeated stochastic games. These results indicate that general human–machine cooperation is achievable using a non-trivial, but ultimately simple, set of algorithmic mechanisms.


Abstract of A Crowd-powered Conversational Assistant Built to Automate Itself Over Time

Crowd-powered conversational assistants have been shown to be more robust than automated systems, but do so at the cost of higher response latency and monetary costs. A promising direction is to combine the two approaches for high quality, low latency, and low cost solutions. In this paper, we introduce Evorus, a crowd-powered conversational assistant built to automate itself over time by (i) allowing new chatbots to be easily integrated to automate more scenarios, (ii) reusing prior crowd answers, and (iii) learning to automatically approve response candidates. Our 5-month-long deployment with 80 participants and 281 conversations shows that Evorus can automate itself without compromising conversation quality. Crowd-AI architectures have long been proposed as a way to reduce cost and latency for crowd-powered systems; Evorus demonstrates how automation can be introduced successfully in a deployed system. Its architecture allows future researchers to make further innovation on the underlying automated components in the context of a deployed open domain dialog system.