‘Plasmonic’ material could bring ultrafast all-optical communications

This rendering depicts a new “plasmonic oxide material” that could make possible devices for optical communications that are at least 10 times faster than conventional technologies (credit: Purdue University/Nathaniel Kinsey)

Researchers at Purdue University have created a new “plasmonic oxide material” that could make possible modulator devices for optical communications (fiber optics, used for the Internet and cable television) that are at least 10 times faster than conventional technologies.

The optical material, made of aluminum-doped zinc oxide (AZO) also requires less power than other “all-optical” semiconductor devices. That is essential for the faster operation, which would otherwise generate excessive heat with the increase transmission speed.

The material has been shown to work in the near-infrared range of the spectrum, which is used in optical communications, and it is compatible with the CMOS semiconductor manufacturing process used to construct integrated circuits.

Faster optical transistors replace silicon

The researchers have proposed creating an “all-optical plasmonic modulator using CMOS-compatible materials,” or an optical transistor, which allows for the speedup compared to systems that use silicon chips.

A cycle takes about 350 femtoseconds to complete in the new AZO films, which is roughly 5,000 times faster than crystalline silicon.

The researchers “doped” zinc oxide with aluminum (thus the AZO), meaning the zinc oxide is impregnated with aluminum atoms to alter the material’s optical properties. Doping the zinc oxide causes it to behave like a metal at certain wavelengths and like a dielectric at other wavelengths.

The AZO also makes it possible to “tune” the optical properties of metamaterials.

Findings were detailed in an open-access research paper appearing in July in the journal Optica, published by the Optical Society of America.

The ongoing research is funded by the Air Force Office of Scientific Research, a Marie Curie Outgoing International Fellowship, the National Science Foundation, and the Office of Naval Research.


Abstract of Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths

Transparent conducting oxides have recently gained great attention as CMOS-compatible materials for applications in nanophotonics due to their low optical loss, metal-like behavior, versatile/tailorable optical properties, and established fabrication procedures. In particular, aluminum-doped zinc oxide (AZO) is very attractive because its dielectric per-mittivity can be engineered over a broad range in the near-IR and IR. However, despite all these beneficial features, the slow (>100 ps) electron-hole recombination time typical of these compounds still represents a fundamental limitation impeding ultrafast optical modulation. Here we report the first epsilon-near-zero AZO thin films that simultaneously exhibit ultrafast carrier dynamics (excitation and recombination time below 1 ps) and an outstanding reflectance modulation up to 40% for very low pump fluence levels (<4 mJ∕cm2) at a telecom wavelength of 1.3 μm. The unique properties of the demonstrated AZO thin films are the result of a low-temperature fabrication procedure promoting deep-level defects within the film and an ultrahigh carrier concentration. © 2015 Optical Society of America

Sri Lanka to be first country in the world with universal Internet access

(credit: Google)

Sri Lanka may soon become the first country in the world to have universal Internet access. On July 28, the government of Sri Lanka signed a Memorandum of Understanding with Google to launch Project Loon, according to Sri Lanka Internet newspaper ColumboPage.

Google is providing high-altitude balloons, using the standard telco high-speed 4G LTE protocol, according to Project Loon project lead Mike Cassidy, in a video (below), “so anyone with a smart phone will be able to get Internet access. … “Since launching a handful of balloons in New Zealand at our Project launch in 2013 we’ve flown millions of test kilometers around the world trying to learn what it will take to provide connectivity to everyone, anywhere, with balloons.”

Project Loon began with a pilot test in June 2013, when 30 balloons were launched from New Zealand’s South Island and beamed Internet to a small group of pilot testers, Google notes. … “Looking ahead, Project Loon will continue to expand the pilot, with the goal of establishing a ring of uninterrupted connectivity at latitudes in the Southern Hemisphere.”*

“In a few months we will truly be able to say: Sri Lanka covered,” said Sri Lanka Foreign, Telecommunications and IT Minister Mangala Samaraweera.

Long-time Sri Lanka resident and telecommunications pioneer Arthur C. Clarke would be proud.

* “Project Loon is just one way Google is looking to expand Internet coverage around the globe,” PC Magazine reports. “Last year, it bought satellite maker Skybox for $500 million to help improve its maps, but also Internet access and disaster relief. Earlier in the year, Google also bought Titan Aerospace, a company that makes solar-powered, near-orbital drones that can fly for about five years nonstop.”


Project Loon: Scaling Up

Can your phone really know you’re depressed?

StudentLife app, sensing, and analytics system architecture (credit: Rui Wang et al.)

Northwestern scientists believe an open-access android cell phone app called Purple Robot can detect depression simply by tracking the number of minutes you use the phone and your daily geographical locations.

The more time you spend using your phone, the more likely you are depressed, they found in a small Northwestern Medicine study published yesterday (July 15) in the Journal of Medical Internet Research. The average daily usage for depressed individuals was about 68 minutes, while for non-depressed individuals it was about 17 minutes.

Another factor was your location. Spending most of your time at home and most of your time in fewer locations — as measured by GPS tracking — also are linked to depression.

In addition, having a less regular day-to-day schedule, leaving your house and going to work at different times each day, for example, also is linked to depression.

Based on those three factors, they claim they could identify which of 28 individuals they recruited from Craig’s List had depressive symptoms — based on a standardized questionnaire measuring depression called the PHQ-9 — 87 percent accuracy.

Example phone usage data from a participant. Each row is a day, and the black bars show the extent of time during which the phone has been is use. The bars on the right side show the overall phone usage duration for each day. (credit: Sohrab Saeb et al./Journal of Medical Internet Research)

“The significance of this is we can detect if a person has depressive symptoms and the severity of those symptoms without asking them any questions,” said senior author David Mohr, director of the Center for Behavioral Intervention Technologies at Northwestern University Feinberg School of Medicine. “We now have an objective measure of behavior related to depression. And we’re detecting it passively. Phones can provide data unobtrusively and with no effort on the part of the user.”

Better than questionnaires

The smartphone data was more reliable in detecting depression than daily questions participants answered about how sad they were feeling on a scale of 1 to 10. Those answers may be rote and often not reliable, said lead author Sohrob Saeb, a postdoctoral fellow and computer scientist in preventive medicine at Feinberg.

“The data showing depressed people tended not to go many places reflects the loss of motivation seen in depression,” said Mohr, who is a clinical psychologist and professor of preventive medicine at Feinberg. “When people are depressed, they tend to withdraw and don’t have the motivation or energy to go out and do things.”

The research could ultimately lead to monitoring people at risk of depression and enabling health care providers to intervene more quickly, they suggest.

While the phone usage data didn’t identify how people were using their phones, Mohr suspects people who spent the most time on them were surfing the web or playing games, rather than talking to friends. “People are likely, when on their phones, to avoid thinking about things that are troubling, painful feelings or difficult relationships,” Mohr said. “It’s an avoidance behavior we see in depression.”

That assumption seems questionable; non-depressed people often spend time on phones texting, checking Facebook, reading, emails, etc.

But Saeb also analyzed the GPS locations and phone usage for 28 individuals (20 females and eight males, average age of 29) over two weeks. The sensor tracked GPS locations every five minutes.

To determine the relationship between phone usage and geographical location and depression, the subjects took a widely used standardized questionnaire measuring depression, the PHQ-9, at the beginning of the two-week study. The PHQ-9 asks about symptoms used to diagnose depression such as sadness, loss of pleasure, hopelessness, disturbances in sleep and appetite, and difficulty concentrating. Then, Saeb developed algorithms using the GPS and phone usage data collected from the phone, and correlated the results of those GPS and phone usage algorithms with the subjects’ depression test results.

Of the participants, 14 did not have any signs of depression and 14 had symptoms ranging from mild to severe depression.

The goal of the research is to passively detect depression and different levels of emotional states related to depression, Saeb said. The information ultimately could be used to monitor people who are at risk of depression to, perhaps, offer them interventions if the sensor detected depression or to deliver the information to their clinicians. Future Northwestern research will look at whether getting people to change those behaviors linked to depression improves their mood.

“We will see if we can reduce symptoms of depression by encouraging people to visit more locations throughout the day, have a more regular routine, spend more time in a variety of places or reduce mobile phone use,” Saeb said.

In addition to studies that use mobile phone sensor data to better understand depression, Mohr’s team also is running clinical trials to treat depression and anxiety using evidence-based interventions.

Contact ehealth@northwestern.edu or 855-682-2487 to learn how to join one of their paid research studies, or visit http://cbitshealth.northwestern.edu/.

This research was funded by research grants from the National Institute of Mental Health of the National Institutes of Health.


Abstract of Mobile Phone Sensor Correlates of Depressive Symptom Severity in Daily-Life Behavior: An Exploratory Study

Background: Depression is a common, burdensome, often recurring mental health disorder that frequently goes undetected and untreated. Mobile phones are ubiquitous and have an increasingly large complement of sensors that can potentially be useful in monitoring behavioral patterns that might be indicative of depressive symptoms.

Objective: The objective of this study was to explore the detection of daily-life behavioral markers using mobile phone global positioning systems (GPS) and usage sensors, and their use in identifying depressive symptom severity.

Methods: A total of 40 adult participants were recruited from the general community to carry a mobile phone with a sensor data acquisition app (Purple Robot) for 2 weeks. Of these participants, 28 had sufficient sensor data received to conduct analysis. At the beginning of the 2-week period, participants completed a self-reported depression survey (PHQ-9). Behavioral features were developed and extracted from GPS location and phone usage data.

Results: A number of features from GPS data were related to depressive symptom severity, including circadian movement (regularity in 24-hour rhythm;r=-.63, P=.005), normalized entropy (mobility between favorite locations; r=-.58,P=.012), and location variance (GPS mobility independent of location; r=-.58,P=.012). Phone usage features, usage duration, and usage frequency were also correlated (r=.54, P=.011, and r=.52, P=.015, respectively). Using the normalized entropy feature and a classifier that distinguished participants with depressive symptoms (PHQ-9 score ≥5) from those without (PHQ-9 score <5), we achieved an accuracy of 86.5%. Furthermore, a regression model that used the same feature to estimate the participants’ PHQ-9 scores obtained an average error of 23.5%.

Conclusions: Features extracted from mobile phone sensor data, including GPS and phone usage, provided behavioral markers that were strongly related to depressive symptom severity. While these findings must be replicated in a larger study among participants with confirmed clinical symptoms, they suggest that phone sensors offer numerous clinical opportunities, including continuous monitoring of at-risk populations with little patient burden and interventions that can provide just-in-time outreach.

New tech keeps your smart phone charged for 30 percent longer

(credit: iStock)

Engineers  at The Ohio State University claim they have created a circuit that makes cell phone batteries last up to 30 percent longer on a single charge. The trick: it converts some of the radio signals emanating from a phone into direct current (DC) power, which then charges the phone’s battery, they state.

This new technology can be built into a cell phone case, adding minimal bulk and weight.

“When we communicate with a cell tower or Wi-Fi router, so much energy goes to waste,” explained Chi-Chih Chen, research associate professor of electrical and computer engineering. “We recycle some of that wasted energy back into the battery.”

“Our technology is based on harvesting energy directly from the source, explained Robert Lee, professor of electrical and computer engineering. By Lee’s reckoning, nearly 97 percent of cell phone signals never reach a destination and are simply lost. Some of the that energy can be captured.

The idea is to siphon off just enough of the radio signal to noticeably slow battery drain, but not enough to degrade voice quality or data transmission. Cell phones broadcast in all directions at once to reach the nearest cell tower or Wi-Fi router. Chen and his colleagues came up with a system that identifies which radio signals are being wasted. It works only when a phone is transmitting.

Next, the engineers want to insert the device into a “skin” that sticks directly to a phone, or better, partner with a manufacturer to build it directly into a phone, tablet or other portable electronic device.

UPDATE June 6: Responding to a request for more information on energy harvesting, we received the following statement from Will Zell, CEO of licensee Nikola Labs: “Nikola Labs has a limit to the technical details we are able to share until our patents are published.”

Tunable liquid-metal antennas

Antenna, feed, and reservoir of a liquid metal antenna (credit: Jacob Adams)

Using electrochemistry, North Carolina State University (NCSU) researchers have created a reconfigurable, voltage-controlled liquid metal antenna that may play a role in future mobile devices and the coming Internet of Things.

By placing a positive or negative electrical voltage across the interface between the liquid metal and an electrolyte, they found that they could cause the liquid metal to spread (flow into a capillary) or contract, changing its operating frequency and radiation pattern.

“Using a liquid metal — such as eutectic gallium and indium — that can change its shape allows us to modify antenna properties [such as frequency] more dramatically than is possible with a fixed conductor,” explained Jacob Adams, an assistant professor in the Department of Electrical and Computer Engineering at NCSU and a co-author of an open-access paper in the Journal of Applied Physics, from AIP Publishing.

The positive voltage “electrochemically deposits an oxide on the surface of the metal that lowers the surface tension, while a negative [voltage] removes the oxide to increase the surface tension,” Adams said. These differences in surface tension dictate which direction the metal will flow.

This advance makes it possible to “remove or regenerate enough of the ‘oxide skin’ with an applied voltage to make the liquid metal flow into or out of the capillary. We call this ‘electrochemically controlled capillarity,’ which is much like an electrochemical pump for the liquid metal,” Adams noted.

Although antenna properties can be reconfigured to some extent by using solid conductors with electronic switches, the liquid metal approach greatly increases the range over which the antenna’s operating frequency can be tuned. “Our antenna prototype using liquid metal can tune over a range of at least two times greater than systems using electronic switches,” he pointed out.

Previous liquid-metal designs typically required external pumps that can’t be easily integrated into electronic systems.

Extending frequencies for mobile devices

“Mobile device sizes are continuing to shrink and the burgeoning Internet of Things will likely create an enormous demand for small wireless systems,” Adams said. “And as the number of services that a device must be capable of supporting grows, so too will the number of frequency bands over which the antenna and RF front-end must operate. This combination will create a real antenna design challenge for mobile systems because antenna size and operating bandwidth tend to be conflicting tradeoffs.”

This is why tunable antennas are highly desirable: they can be miniaturized and adapted to correct for near-field loading problems such as the iPhone 4′s well-publicized “death grip” issue of dropped calls when by holding it by the bottom. Liquid metal systems “yield a larger range of tuning than conventional reconfigurable antennas, and the same approach can be applied to other components such as tunable filters,” Adams said.

In the long term, Adams and colleagues hope to gain greater control of the shape of the liquid metal in two-dimensional surfaces to obtain nearly any desired antenna shape. “This would enable enormous flexibility in the electromagnetic properties of the antenna and allow a single adaptive antenna to perform many functions,” he added.


Abstract of A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity 

We describe a new electrochemical method for reversible, pump-free control of liquid eutectic gallium and indium (EGaIn) in a capillary. Electrochemical deposition (or removal) of a surfaceoxide on the EGaIn significantly lowers (or increases) its interfacial tension as a means to induce the liquid metal in (or out) of the capillary. A fabricated prototype demonstrates this method in a reconfigurable antenna application in which EGaIn forms the radiating element. By inducing a change in the physical length of the EGaIn, the operating frequency of the antennatunes over a large bandwidth. This purely electrochemical mechanism uses low, DC voltages to tune the antenna continuously and reversibly between 0.66 GHz and 3.4 GHz resulting in a 5:1 tuning range. Gain and radiation pattern measurements agree with electromagnetic simulations of the device, and its measured radiation efficiency varies from 41% to 70% over its tuning range.

New technology could fundamentally improve future wireless communications

Novel full-duplex transceiver (top device) in an anechoic chamber for testing (credit: Sam Duckerin)

A new electronics technique that could allow a radio device to transmit and receive on the same channel at the same time (“full duplex,” or simultaneous, two-way transmission) has been developed by researchers at the University of Bristol’s Communication Systems and Networks research group. The technique can estimate and cancel out the interference from a device’s own transmission.

Today’s cell phones and other communication devices use twice as much of the radio spectrum as necessary. The new system requires only one channel (set of frequencies) for two-way communication,so it uses only half as much spectrum compared to current technology.

The new technology combines electrical balance isolation and active radio frequency cancellation. Their prototype can suppress interference by a factor of more than 100 million and uses low-cost, small-form-factor technologies, making it well suited to use in mobile devices such as smartphones.

Significant impacts on mobile and WiFi systems

For future cellular systems (such as 5G systems), the new technology would deliver increased capacity and data rates, or alternatively, the network operators could provide the same total network capacity with fewer base-station sites, reducing the cost and environmental impact of running the network.

In today’s mobile devices, a separate filtering component is required for each frequency band, and because of this, today’s mobiles phone do not support all of the frequency channels available internationally. Different devices are manufactured for different regions of the world, so there are currently no 4G phones capable of unrestricted global roaming.

In Wi-Fi systems, the new design would double the capacity of a Wi-Fi access point, allowing for more simultaneous users or higher data rates.

Replacing these filters with the research team’s duplexer circuit would create smaller and cheaper devices, and would allow manufacturers to produce a single model for the entire world. This would enable global roaming on 4G and would further decrease cost through greater economies of scale.

The team had published papers about their research in the IEEE Journal on Selected Areas in Communications special issue on full duplex radio, and in this month’s issue of the IEEE Communications Magazine and has filed patents.


Abstract of Electrical balance duplexing for small form factor realization of in-band full duplex

Transceiver architectures utilizing various self-interference suppression techniques have enabled simultaneous transmission and reception at the same frequency. This full-duplex wireless offers the potential for a doubling of spectral efficiency; however, the requirement for high transmit-to-receive isolation presents formidable challenges for the designers of full duplex transceivers. Electrical balance in hybrid junctions has been shown to provide high transmit- to-receive isolation over significant bandwidths. Electrical balance duplexers require just one antenna, and can be implemented on-chip, making this an attractive technology for small form factor devices. However, the transmit-toreceive isolation is sensitive to antenna impedance variation in both the frequency domain and time domain, limiting the isolation bandwidth and requiring dynamic adaptation. Various contributions concerning the implementation and performance of electrical balance duplexers are reviewed and compared, and novel measurements and simulations are presented. Results demonstrate the degradation in duplexer isolation due to imperfect system adaptation in user interaction scenarios, and requirements for the duplexer adaptation system are discussed.


Abstract of Optimum Single Antenna Full Duplex Using Hybrid Junctions

This paper investigates electrical balance (EB) in hybrid junctions as a method of achieving transmitter-receiver isolation in single antenna full duplex wireless systems. A novel technique for maximizing isolation in EB duplexers is presented, and we show that the maximum achievable isolation is proportional to the variance of the antenna reflection coefficient with respect to frequency. Consequently, antenna characteristics can have a significant detrimental impact on the isolation bandwidth. Simulations that include embedded antenna measurements show a mean isolation of 62 dB over a 20-MHz bandwidth at 1.9 GHz but relatively poor performance at wider bandwidths. Furthermore, the operational environment can have a significant impact on isolation performance. We present a novel method of characterizing radio reflections being returned to a single antenna. Results show as little as 39 dB of attenuation in the radio echo for a highly reflective indoor environment at 1.9 GHz and that the mean isolation of an EB duplexer is reduced by 7 dB in this environment. A full duplex architecture exploiting EB is proposed.